Interleaved Factorial Non-Homogeneous Hidden Markov Models for Energy Disaggregation

نویسندگان

  • Mingjun Zhong
  • Nigel Goddard
چکیده

To reduce energy demand in households it is useful to know which electrical appliances are in use at what times. Monitoring individual appliances is costly and intrusive, whereas data on overall household electricity use is more easily obtained. In this paper, we consider the energy disaggregation problem where a household’s electricity consumption is disaggregated into the component appliances. The factorial hidden Markov model (FHMM) is a natural model to fit this data. We enhance this generic model by introducing two constraints on the state sequence of the FHMM. The first is to use a non-homogeneous Markov chain, modelling how appliance usage varies over the day, and the other is to enforce that at most one chain changes state at each time step. This yields a new model which we call the interleaved factorial non-homogeneous hidden Markov model (IFNHMM). We evaluated the ability of this model to perform disaggregation in an ultra-low frequency setting, over a data set of 251 English households. In this new setting, the IFNHMM outperforms the FHMM in terms of recovering the energy used by the component appliances, due to that stronger constraints have been imposed on the states of the hidden Markov chains. Interestingly, we find that the variability in model performance across households is significant, underscoring the importance of using larger scale data in the disaggregation problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Disaggregation of Low Frequency Power Measurements

Fear of increasing prices and concern about climate change are motivating residential power conservation efforts. We investigate the effectiveness of several unsupervised disaggregation methods on low frequency power measurements collected in real homes. Specifically, we consider variants of the factorial hidden Markov model. Our results indicate that a conditional factorial hidden semi-Markov ...

متن کامل

Approximate Inference in Additive Factorial HMMs with Application to Energy Disaggregation

This paper considers additive factorial hidden Markov models, an extension to HMMs where the state factors into multiple independent chains, and the output is an additive function of all the hidden states. Although such models are very powerful, accurate inference is unfortunately difficult: exact inference is not computationally tractable, and existing approximate inference techniques are high...

متن کامل

Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy Disaggregation

Blind source separation problems are difficult because they are inherently unidentifiable, yet the entire goal is to identify meaningful sources. We introduce a way of incorporating domain knowledge into this problem, called signal aggregate constraints (SACs). SACs encourage the total signal for each of the unknown sources to be close to a specified value. This is based on the observation that...

متن کامل

REDD: A Public Data Set for Energy Disaggregation Research

Energy and sustainability issues raise a large number of problems that can be tackled using approaches from data mining and machine learning, but traction of such problems has been slow due to the lack of publicly available data. In this paper we present the Reference Energy Disaggregation Data Set (REDD), a freely available data set containing detailed power usage information from several home...

متن کامل

Context-Based Energy Disaggregation in Smart Homes

In this paper, we address the problem of energy conservation and optimization in residential environments by providing users with useful information to solicit a change in consumption behavior. Taking care to highly limit the costs of installation and management, our work proposes a Non-Intrusive Load Monitoring (NILM) approach, which consists of disaggregating the whole-house power consumption...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013